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- \ ABSTRACT
E \

In order to determine the Fourier transform of a quasi-periodic time

- series (linear problem), or the power spectrum of a stationary random § %
S time series (quadratic problem), it is desirable that data be recorded

without interruption over a long time interval. In practice, this may

% not be possible. The effect of regular interruption such as the day/

night cycle is well known. We here investigate the effect of irregular

interruption of data collection (the "!:n:eaking"‘i of the window function)

with the simplifying assumption that there is a uniform probability ‘@

that each interval of length ‘€ , of the total interval of length T = Nt,

{
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yields no data.TP/
For the li;eAr\case we find that the noise-to-signal ratio will
have a (one-sigma) value less than € if N exceeds p-l(l-p)e-z. ?
For the quadratic case, the same requirement is met by the less restric-
tive requirement that N exceed p-l(l-p)s-l.
It appears that, if four observatories spaced around the earth were
to operate for 25 days, each for six hours a day (N = 100), and if the
probability of cloud cover at any site on any day is 20X (p = 0.8),
the r.m.s. noise-~to-signal ratio i{s 0.25% for frequencies displaced

from a sharp strong signal by 15 uHz. The noise-to-signal ratio drops

off rapidly if the frequency offset exceeds 15 uHz.




EXAMINATION OF TIME SERIES THROUGH RANDOMLY BROKEN WINDOWS

I. INTPRODUCTION

In many astrophysical problems one is concerned with the study of
time series. It often happens that the property of particular interest
is the spectrum of the time series. In principle, one may determine a
time series to a prescribed accuracy by making measurements, without
interruption, over a sufficiently long time interval. In practice, the
length of time over which the variables may be measured will be limited.
Moreover, measurements may necessarily be interrupted (or otherwise impaired)
for one reason or another. The relationship of the spectrum determined
by limited, interrupted measurements to the intrinsic spectrum has been
the subject of many investigations, as recently reviewed by Deeming (1975).

If the original time series is denoted by x(t), one may regard the

measurements y(t) as being determined by
y(t) = £(t) x(t), (1.1)

where £(t) 1is the "window function." We regard x, y and f as being simple
scalar functions but the procedure may be generalized to replace x, y by
vectors and f by a tensor.

We use the Fourier transform notation
x(t) -/dm e 19t () (1.2)
x(t) (1.3)

where the limits of integration are to be taken to be - to + = if other

limits are not explicitly specified.




If we are interested in determining X(w), the Fourier transform of

the time series x(t), then we may use the relation
¥(w) -/:lm' flw") X(w-w") (1.4)

to relate the Fourier transform of the measured time series y(t) to that

3
Py

of the original time series x(t).

/]

:f; We are interested in the possibility that f(t) may be regarded as a

random variable, expressible as

s
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f(t) = F(t;al,az,...,aN) , (1.5)

Py

e

where 050 0y are independent random variables with specified expec-

2’00-
tation distributions. By the central limit theorem (Papoulis, 1965), we

expect that the random variable f (or its Fourier transform f) will have

. 1.
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a distribution approximately Gaussian in form if N is not a small number,

.
¥

so that an adequate representation of f would be given by 1its mean <E>
and its standard deviation G(E).
If, on the other hand, x(t) is a random time series, we will be

concerned with the autocorrelation function Rx(tl defined by
Rx(t) = Cx(t") x(£'+t)>, (1.6)

and the power spectrum of the time series, defined as the Fourier transform

o e it i

of Rx(t):
Rx(t) -/:1@ e-mtsx(m), (1.7)
1 int
Sx(m) = -E];te Rx(t). (1.8)
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On noting that

<E@) X (w)D = Sx(co) S(w+w') (1.9

and evaluating <y(w) ¥ (®')> , we may verify that
sy(m) = /dm w') s, (w=-w") (1.10)

where
wiw) = £(w) f (~0). (1.11)

Clearly the function W(w) represents the capability of the measurement
process, described by the "window function" £(t), to determine the power
spectrum Sx(m). The function W(w) may be expressed in terms of the inde-

pendent random variables
w(w) = W(w;al,az,...,an). (1.12)

Once again, unless N is a small number, we expect that the distribution
of w will be approximately Gaussian so that it may be characterized by
its mean value <w> and standard deviation o(w).

This article was prompted by a problem related to the determination
of normal modes of oscillation of the sun, as determined by measurement of
the photospheric velocity field. Measurements have been presented by
Deubner (1975) and by Rhodes et al. (1977), and their theoretical inter-
pretation discussed by Ulrich and Rhodes (1977) and by Ulrich et al. (1978).
For optimum determination of the power spectrum of the velocity field
(expressed as a function of wave number), it is clearly desirable to make
observations without interpretation over as long an interval as possible.

Away from polar regions, observations from a single station are interrupted
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by the day-night cycle which leads to unacceptable aliasing of the data.

Observations made from a spacecraft in polar orbit would obviously yield
un-aliased data of higher quality and higher frequency resolution. Obser-
vations made from the south pole during austral midsummer can lead to
several days of uninterrupted observation and to still longer intervals
with occasional, irregular interruption. It is also possible to select
three or four stations around the earth which, in the absence of any cloud
cover, could give continual coverage of the sun for many weeks. However,
one must anticipate that some of the data would be lost by cloud cover.

It is clearly desirable that one should be able to make some esti-
mate of the accuracy with which oscillation modes may be determined when
it appears possible to observe the sun over a long interval of time losing
gome blocks of time because of cloud cover. The purpose of this article
is to develop a model which enables us to address problems of this type.
After presenting a few general formulas, we shall simplify the problem
considerably by supposing that observations are made over a large number
N of equal time intervals, each of length T, so that the total time

interval T 1is given by
T=Nt. (1.13)

With certain additional simplifying assumptions, we shall consider the

statistical properties of the functions f(w) and w(w) which are Tepre-

sentative of "randomly broken" window functions.

ot
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II. MATHEMATICAL MODEL
In the case that the window function £(t) is expressible in the form
(1.5), in terms of a number of random variables, we wish to study the distri-
bution of the functions f(w), w(w), entering equations (1.4) and (1.10).
We suppose that the distribution of the variables o to g is given by

the probability function P(a aN) such that P(c cxN)dal eeey da

1° cco N

1 in the range oy to al-Pdul, etc. Then the

expectation value of the quantity f() is given by

1° e
is the probability of finding o

<E(m)> -ﬁlna PN(a) F(w;al,...,au), (2.1)

where dNa denotes da. ..., daN, and PN(a) denotes P(al, ey aN). If we

1
use the following notation for the variance of a complex variable of a

complex variable z,
o(2) = 0%(z)) + (2, (2.2)

where z_ and z, are the real and imaginary parts of z, then noting that

i
f(-w) is the complex conjugate of E(m), we see that

¢ ()= <Fw E 0> -<FWd> <E-w)> . (2.3)
The first term on the right-hand side may be evaluated from
- - N ~ ~
= - - . -t e N
Kwlw)D> =<L£(w) £ (-w)D> ﬁ a PN(a)F(w,al,...,aN) F(-w; al,...,aN) (2.4)
We see that equation (2.4) also gives the expectation value of the
"window spectrum” w(w) which appears in equation (1.10) and is appropriate

for the discussion of stationary random time series. The variance of this

function is given by

o2 (w) =) w (@)D - <ww)D> Lwl-w)> (2.5)

i el ikl )
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where

2 2
N ~ ~
wlw) wi-w)D> -[d aPN(u) %F(w;al,...,aug {F(-m, a, ...,aN) . (2.6)
As indicated in the introduction, we intend to consider the case that
the observing time ty to tye of length T, is divided into N equal intervals

bounded by times tl, t2, ... where

t. =t. +0nT 2.7
n 0
so that we may adopt the form
N
F(t;al, ...,aN) = E a §h(t-tn_1) -h(t-tn) (2.8)
n=1

where h(t) is the Heavyside function:

h(t) = 0 1if t<O,
(2.9)
= 1 1if t>0.
We also assume that the intervals are statistically independent, so that

we may write

. (2.10)

N -
PN(a)d a = P(al, cees aN)dul, ceey daN %P].(ul) dal}...tpn(aN)daN
If we assume that, for each interval, there is a (uniform) probability p

that the window is open and probability 1l-p that {t is closed, then
P(a,) = p 8(ax -1) + (1-p)S (a)) . (2.11)
In evaluating (E(m)), given by (2.1), we will use

<a.> =p. (2.12)

In evaluating the quantity given by equation (2.4), we will need to

\

evaluate (am o, which is clearly given by p2 if m# n but by p 1f m = n.

n/
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where Gmn is the Kronecker function. In evaluating the quantity given
by (2.6), we need to evaluate the expectation value of amanapaq. By con-
sidering the various possibilities (m,n,p,q all different: two of them

the same, etc.) we find that

4 3 4
<amanapaq> p +(p -p )(Gmn+6mp+6 +8 +68§ +8 )

2 3 4
+ (p° - 3p” + 2p )(6npq + Gmpq + amnq + amnp)

+ (p - 4p2 + E»p3 - 3p4) Gmpq, (2.14)

where Gmnp =1 if m = n = p otherwise 0, and ‘Smnpq is defined similarly.




III. EVALUATION OF MODEL

For simple (non-random) time series, equation (1.4) gives the relation~
ship between the Fourier transforms of the original and measured time series.
In this context, the properties of the random window function f(t) may be

characterized by <E(m)) and cz(f).

= On substituting the form (2.8) into (1.5), we find that

k. N 1
e 1 L) elole, + n-3)
. * A nz:l @ sm(fwr)e o 27 . (3.1)

N On using (2.1) and (2.12), we obtain
1

iw(t +t)

~ 1 1 2 o N
& <f(w)> = 7 Tp sinc(; wT) e , (3.2)
§
* where sinc 8= 871 sin 6. !
E On using (2.4), we find that
¥ <w(w)>= (ziw)2 'I‘2 [pzsinc:2 (%w’r) + N-lp(l— p)sincz(%m)] . (3.3)

Hence, using (2.3), we obtain
GZ(E) = (%) 2 '1‘2 N-l p(l-p) siuc2 (-]2'— (u‘r) . (3.4) ‘

For evaluating the effects of 'breaking" of the window function, it
is convenient to normalize the standard deviation with respect to the maxi- \

mum value of f(w), which is the value at w = 0. Accordingly, we introduce

the definition

. olf@
For the case under consideration, this has the form }
L (@) = N1/2 p‘l/2 ¢ -p)l/2 |sinc % ot] ., (3.6) , ’




For discussion of the properties of randomly broken windows in the
study of stationary random time seriles, it is necessary to evaluate the
mean value and standard deviation of w(w). The former is given by equa-
tion (3.3). The first term inside the brackets has the same form as arises
in the non-random case (p = 1). The second term represents a change in the
mean spectrum, so it is convenient to introduce the symbol Az for the

ratio of the additional term to the maximum value of the principal term:

,i
" 8, = ¥ p7h (1-p) sine® Gum) . (3.7)

] ; On writing equation (2.6) in the simpler form

J 1 <w(@w(-w)> = <F(0;0)F(w;0) F(- 03 0)F(- 03 0)> (3.8)
i

-, 5 and using equations (1.3) and (2.8), we see that

iwt iwt it iot
<wlw)w(-w)> = 4 E <amanapaq>(e m_e T l) (e To_e T 1)

- i 21w/ mnpq

-iwt -lwt -int -iwt )
x(e P_ . p-l)(e 9_ . 91/ (3.9)

On using equation (2.14), we see that this may be expressed in the form

1 | 4 3_ 4 *
<w@w(-0)> = pE, + (p”-p )(E, +E5+ 4E,)
(2m)4 F ™1 2772 3

+ 207 - 3% + M) (5, + E) (3.10)

+ (p - 4p2 + 6p3 - 3p4) Est

where




iwtm imtm_l I 4
E1 - I% (e -e ) s
2 2
it det det_ -t \
e, - (3 (e m m—l) Hz(e n_, nl)} ,
m n
2
iwt 1wt -iwt -iwt iwt it
| - E, = ‘2 (e B e m-l) (e B e m—l)%lz(e e n—l)l , ?(3.11)
E - Im n
2
> 1wt iwt int iwt -1wt -iwt
- E, = %2(6 —e m—l)} {z(e no_ 1)(e n n-l) "
: " " /
2
iwt iwt -iwt -iot
- m m~1 m m-1
‘ ES %:(e -e ) (e -e ) .
K
=
¥
; On evaluating these sums, we find that
4{1
El 16 sin (in)’
- 2{1 2({1, \sinwT
E2 16 sin (2 wI)sin (2““)5155? s
i 2(1 2(1
E3 = 16 N sin (EmT) sin (E(M) s >(3.12)
2{1 2{1
E4 16 sin (E-aﬂ)sin (E w‘r)

E. = 16 N sin"(% m).

Hence equation (3.10) is found to be expressible as

10

|
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KW w (=a)> = ( 21,,)4

On using equations (2.3) and the definition

we find that

Zz(w) = {2 N-lp-l(l-p) sincz(—;-(u'r)sincz(-lm‘r)

+ 2(?3- 94 ) N_'2 sincz(%— m'l‘)sincz(— mT)

+ 4(p2- 3p3 + ZpI‘) N-'2 sincz(%w'l‘) sincz(l w‘r)

+ ZN-ZP-l(l-P) sincz(% cu'l‘)sincz(— w‘f)
+ N-zp-2(3 - 10p + 7p2) sincz(% (uT) '.-zim:z(l m‘l’)

+ N-3p-3(1 - 4p + 6p2 - 3p3) sinc’

pl‘ sinc“(% w'l‘)

1 sincwT

2 sincwt

2

+ 4(93- p4) Nt sincz(%w'r)sincz(i wT)

2

+ (p - 4p2 + 6p3 - 3[»4)N-3 sinc"(% arr): . (3.13)

o (w(w))
I = 4 , (3.14)
(2 70)

2

1 sinwT

2 sinwT
2

1/2
. (3.15)

S ]
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IV. DISCUSSION

We see from the preceding section that the effect of a random "break-
ing" of the window function is to produce an aliasing of any signal. This
effect is described by the function 21 or by A2 and 22 as given by equa-
tions (3.6), (3.7) and (3.15).

For the '"linear" problem, as described by equation (1.4) the mean

N Fourier transform of the window function, as given by equation (3.2),

has the same form as it does in the non-random case, although it is

-

3 reduced by a factor p. The standard deviation is characterized by Zl,

ke defined by equation (3.5) and given by equation (3.6).
. 4
£ It is convenient to introduce the notation
4
3 -1 |
; Wy, = 2T —, w, = 2t 7. (4.1)
2
¢

On noting that sinc 6 < 1 for 8 < 1, and that |sinc 8] < gt for 8 3 1,

we see that Zl < S1 where
‘ §) (@ = N2 20012 wgu
(4.2)
- Sl(m) = N'l/zp'llz(l-p)llz(wT/w) y © 20

Hence the aliasing is most severe within the range of a few times W, of
the strongest signal.

We may infer from the above restriction the minimum number Nl of
intervals necessary to ensure that Zl is below an assigned level ¢ for a

given value of p.

We see from (4.2) that we require N > Nl where

N, = (1-p)p~te 2, (%.3)

12
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If, for instance, p = 0.8 and we require that Zlg 0.05, N must be at
least 100.

For the "quadratic' problem in which we are determining the spectrum
of a stationary random time series, the aliasing is described by the
functions Az(m) and Zz(m) given by equations (3.7) and (3.15).

We see from equation (3.3) that the second term in brackets is smaller

than the envelope of the first term, and so may be neglected, for w < w, ,

where

w, = N1/2(1_p)1/2p-1/2mr (4.4)

For @ > Wps the second term produces a "tail" to the principal contribu-

tion to <w(w)> . By an argument similar to that leading to equation (4.2),

we find that A2 < DZ’ where

D@ = N o h(l-p) , w<u,
.5)

D, (w) = N_lp-l(l-p) (m,l_/m)2 s ©>w.

Now consider the four terms in the second bracket in equation (3.15).

It 18 clear that the third term may be ignored by comparison with the first
1

since it has a similar dependence on « but includes an extra factor N .
The second term may also be ignored by comparison with the first: the

extra factor N-'1 (sin wT)/(sin wT) has a maximum value of unity, and an

RMS value of order of N-I/Z.

In comparing the fourth term by comparison to the first, we see that

the ratio is given by

21
sinc (swT
R = Q(p) 5 (37) .6)
N

sinc 2(% m‘r)

13




where

2
Qp) = i=3ptde 4.7)

2p2

It is easily verified that Q(p) < 0.5 in the range 0.5 ¢ p< 1. Hence

< R has a maximum value of order 0.5 at values of @ for which wt = 2nm. We

- find that, when R 1s averaged over frequency, it varies with N as N-l.
y Hence we may, to sufficient approximation ignore the fourth term and so
replace (3.15) by
N
. o ,1/2,-1/2 ~1/2 1/2 1 1
i > 2(ou) ~ 27'°N P (1-p) lsinc(sz)“sinc(zmT)I. (4.8)
v
{ We find that Zz < 52’ where
L
1/2. - -
. Sz(m) -2 /2N 1/2p 1/2(1._p)1/2' W< uy
1/2 ~1/2 -1 ®
; Sz(w) =2 /ZN /Zp /2(1-1:n)1/2 7.,1 , weK @<, o (4.9)

2
1/2.-3/2 -1 1/2(®
Sz(w) =2 /2N /Zp /2(1-9) /2(—;—) y W W . /

We see that, for the same values of N and p, the maximum value of C, is

2
21/2 times larger than the maximum value of Zl. Hence the minimum number
Nz of intervals necessary to ensure that 22 is below an assigned level,

for various values of p, is twice the corresponding value of N given by

1’
equation (4.3).

However, the quadratic case is more complicated than the linear case
in that Zz(m) is more complicated than Zl(w), and Az(w) is nonzero (whereas
Al(w) is zero and has been neglected).

14
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On noting that the dominant term of (3.3) (that which survives in the
nonrandom case that p = 1) varies as (w,r/w)2 for w > Wr, we see that Zz(m)

is less than the tail of the dominant term, and so may be neglected, for

cu<mz, whe.

-1/2

wg = U2 12 oy - (4.10)
1
- On the other hand, we find that Sz(w) is less than Dz(w) for w > W, » where
i
w = V220 U2, oy, (4.11) |
c T b 1
, i
. Hence we may, to adequate approximation, ignore Zz(w) in assessing the !
{
- aliasing which occurs in the quadratic case.
i i
¥ We see from (4.5) that the minimum value of N necessary to ensure !
|
f that Az(w) is less than some maximum value € is given by N > NZ' where ‘

N, = p‘l(l-p)c'1 . (4.12)

We see from (4.3) that Nz is smaller than Nl by the factor €. Hence

aliasing is likely to be less serious in the quadratic case than it is in

the linear case.

In order to assess the implications of the present model concerning
ground-based observations of solar oscillations, one will need to have
detailed estimates of the expected spectrum (in particular, the spacing ]

and relative power of nearby lines) and the expected cloud cover at three

or four observatories positioned round the world. It is also desirable
that the present model should be extended by considering separate values
of p for sach of the observatories, and possibly by taking into account

the correlation between cloud cover on consecutive days.

15




Nevertheless, we can illustrate the results of this model by consider-
ing a hypothetical situation. Suppose that four observatories are located
around the world in such a way as to give continuous coverage (in the
absence of cloud cover), and that these observatories are operated for 25
days. Then N = 100. Suppose that, for any observatory on any day, there
is 20X probability of cloud cover so that p = 0.80. We find from (4.1)
that (using v = w/27W), v, = 15uHz. For frequencies less than this value,
(4.5) shows that the aliasing amounts to 0.25% or less. For frequencies
above 151 Hz, the aliasing drops off rapidly.

Although it will be necessary to make more detailed and specific
calculations to draw definite conclusions, it appears from the above simple
example that it may be possible to carry out high-quality studies of solar
oscillations from a chain of ground-based observatories.

This work was supported in part by NASA Grant NGL 05-020-272, Office
of Naval Research Contract N00014-~75-C-0673, and the Max C. Fleischmann

Foundation.
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